

Highway Capacity Manual 6th Edition

Transportation Research Board

Learning and Applying the Methods and Models of the HCM

A Short Course Day #2

Traffic Operations at Intersections Learning and Applying the Models and Methods of the Highway Capacity Manual Using Simplified Scenarios and Computational Engines

Michael Kyte and Rod Troutbeck

- Check-in
- Diving in: Exploring the simplified scenarios
- Check-out and closure

- Check-in
- Diving in: Exploring the simplified scenarios
 - Scenario 3-2 impedance
 - Scenario 4.1 capacity of a lane
 - Scenario 4.4 critical movement analysis
 - Scenario 4.2 predicting delay
- Check-out and closure

- Check-in
- Diving in: Exploring the simplified scenarios
 - Scenario 3-2 impedance
 - Scenario 4.1 capacity of a lane
 - Scenario 4.4 critical movement analysis
 - Scenario 4.2 predicting delay
- Check-out and closure

The Big Picture

- What is impedance?
- How does movement 4 impede movement 7?
- How does this impedance affect the capacity for movement 7?

Terms We Will Use

- Critical headway and follow-up headway
- Conflicting flow rate
- Impedance
- Potential and movement capacity
- Queue free state

$$c = \frac{v_c e^{-v_c t_c/3600}}{1 - e^{-v_c t_f/3600}}$$

- c = capacity (veh/hr v_c = conflicting flow (veh/hr) t_c = critical headway (sec)
- t_f = follow up headway (sec)

 $c_4 = \frac{v_{c,4}e^{-v_{c,4}t_{c,4}/3600}}{1 - e^{-v_{c,4}t_{f,4}/3600}}$

capacity for movement 4

$$c_4 = \frac{600e^{-(600)(4.1)/3600}}{1 - e^{-(600)(2.2)/3600}}$$

 $c_4 = 987 \ veh/hr$

 $\frac{v_4}{c_4} = \frac{100 \ veh/hr}{987 \ veh/hr} = 0.101$

volume-to-capacity ratio for movement 4

Table 3-6. Given conditions for Example Calculation 3-4

Movement	Volume (veh/hr)	Rank	t _c (sec/veh)	t _f (sec/veh)	
2	600	1	-	-	
4	100	2	4.1	2.2	
7	7 50		7.1	3.5	

$$c = \frac{v_c e^{-v_c t_c/3600}}{1 - e^{-v_c t_f/3600}}$$

- c = capacity (veh/hr v_c = conflicting flow (veh/hr)
- t_c = critical headway (sec)
- t_f = follow up headway (sec)

$$c_7 = \frac{v_{c,7}e^{-v_{c,7}t_{c,7}/3600}}{1 - e^{-v_{c,4}t_{f,4}/3600}}$$

$$c_7 = \frac{800e^{-(600)(7.1)/3600}}{1 - e^{-(600)(3.5)/3600}}$$

 $c_7 = 306 veh/hr$

 $c_{p,7} = 306 \ veh/hr$

Table 3-6. Given conditions for Example Calculation 3-4

Movement	Volume (veh/hr)	Rank	t _c (sec/veh)	t _f (sec/veh)		
2	600	1	-	-		
4	100	2	4.1	2.2		
7	50		7.1	3.5		

$c_{p,7} =$	306	veh/hr
-------------	-----	--------

 $\frac{v_4}{c_4} = \frac{100 \ veh/hr}{987 \ veh/hr} = 0.101$

 $p_{0,4} = 1 - \frac{v_4}{c_4} = 1 - 0.101 = 0.899$

 $c_{m,7} = \left(1 - \frac{v_4}{c_4}\right) c_{p,7}$

 $c_{m,7} = (0.899) (306) = 275 \ veh/hr$

Potential capacity movement 7

Probability of queue for movement 4

Probability of queue-free state for movement 4

Movement capacity Movement 7

Movement capacity movement 7

Table 3-6. Given conditions for Example Calculation 3-4

Movement	Volume	Rank	t _c	t _f	
	(veh/hr)		(sec/veh)	(sec/veh)	
2	600	1	-	-	
4	100	2	4.1	2.2	
7	7 50		7.1	3.5	

The Big Picture

- What is impedance?
- How does movement 4 impede movement 7?
- How does this impedance affect the capacity for movement 7?

- Check-in
- Diving in: Exploring the simplified scenarios
 - Scenario 3-2 impedance
 - Scenario 4.1 capacity of a lane
 - Scenario 4.4 critical movement analysis
 - Scenario 4.2 predicting delay
- Check-out and closure

The Big Picture

- How do we calculate capacity of a lane at a signalized intersection?
- We measure or predict green times, we measure or predict cycle length, and we measure or predict the saturation flow rate.
- Simply put, the capacity is the product of the green ratio (green time divided by cycle length) and the saturation flow rate.

Terms We Will Use

- Green time
- Cycle length
- Green ratio
- Saturation flow rate

$$c = s \left(\frac{g}{C}\right)$$

c = capacity, veh/hr
s = saturation flow rate, veh/hr
g = effective green time, sec
C = cycle length, sec

Example Calculation 4-9. Determining Lane Capacity

For one lane of a signalized intersection (Figure 4-38), the saturation flow rate is 1900 vehicles per hour. The green is displayed for 15 sec, while the yellow time is 4 sec and the red clearance time is 1 sec. The lost time per phase is 4 sec. There are 60 cycles in one hour. What is the capacity of the lane?

$$C = \frac{3600 \text{ sec/hr}}{60 \text{ cycles/hr}} = 60 \text{ sec}$$

Example Calculation 4-9. Determining Lane Capacity

For one lane of a signalized intersection (Figure 4-38), the saturation flow rate is 1900 vehicles per hour. The green is displayed for 15 sec, while the yellow time is 4 sec and the red clearance time is 1 sec. The lost time per phase is 4 sec. There are 60 cycles in one hour. What is the capacity of the lane?

	phase duration, D _p							
displayed red, R		displayed green, G	′	R _C				
	I ₁			l ₂				
effective red, r		effective green, g		r				
	ת ו	D_{p} = phase duration, sec						

D = G + Y + R	$D_p = phase duration, sec$
$D_p = 0 + 1 + R_c$	G = displayed green, sec
	Y = displayed yellow, sec
$D_p = 15 + 4 + 1 = 20 \ sec$	R _c = red clearance time, sec
	R = displayed red, sec

 $g = G + Y + R_c - l_t$

g = 15 + 4 + 1 - 4 = 16 sec

Example Calculation 4-9. Determining Lane Capacity

For one lane of a signalized intersection (Figure 4-38), the saturation flow rate is 1900 vehicles per hour. The green is displayed for 15 sec, while the yellow time is 4 sec and the red clearance time is 1 sec. The lost time per phase is 4 sec. There are 60 cycles in one hour. What is the capacity of the lane?

$$g/C = (16 \text{ sec})/(60 \text{ sec}) = 0.27$$

green ratio

capacity

$$c = s \left(\frac{g}{c}\right)$$
 = (1900)(0.27) = 513 veh/hr

HIGHWAY CAPACITY MANUAL

The Big Picture

- How do we calculate capacity of a lane at a signalized intersection?
- We measure or predict green times, we measure or predict cycle length, and we measure or predict the saturation flow rate.
- Simply put, the capacity is the product of the green ratio (green time divided by cycle length) and the saturation flow rate.

- Check-in
- Diving in: Exploring the simplified scenarios
 - Scenario 3-2 impedance
 - Scenario 4.1 capacity of a lane
 - Scenario 4.4 critical movement analysis
 - Scenario 4.2 predicting delay
- Check-out and closure

The Big Picture

• Does our intersection design provide sufficient capacity to accommodate the projected or measured traffic volumes?

Terms We Will Use

- Flow ratio
- Capacity utilization
- Lost time

(5 + 6) + (7 + 8) = 600 + 900 = 1500 veh/hr

Concept:

 Flow ratio: proportion of the hour required to serve the given demand

y = v/s

v = arrival volume, veh/hr

s = saturation flow rate, veh/hr

y = flow ratio

9. Scenario 4-4. Calculating the Capacity Utilization of an Intersection Using Critical Movement Analysis

Figure 4-59. Flow ratios for each movement for Example Calculation 4-15

Figure 4-59. Flow ratios for each movement for Example Calculation 4-15

Figure 4-59. Flow ratios for each movement for Example Calculation 4-15

sum = 0.803

$$X_c = \frac{(0.321 + 0.482)}{74/90} = \left(\frac{0.803}{0.82}\right) = 0.98$$

 X_c = critical volume-to-capacity ratio y_{EW} -critical = critical flow ratio for EW y_{NS} -critical = critical flow ratio for NS C = cycle length, sec L = lost time per phase, sec

Figure 4-59. Flow ratios for each movement for Example Calculation 4-15

Table 4-6. Sufficiency of capacity

X _c	Sufficiency of capacity rating	
< 0.85	Intersection is operating under capacity. Excessive delays are not experienced.	
0.85–0.95	Intersection is operating near its capacity. Higher delays may be expected, but continuously increasing queues should not occur.	
0.95–1.00	Unstable flow results in a wide range of delay. Intersection improvements will be required soon to avoid excessive delays.	•
> 1.00	The demand exceeds the available capacity of the intersection. Excessive delays and queuing are anticipated.	

The Big Picture

 Does our intersection design provide sufficient capacity to accommodate the projected or measured traffic volumes?

- Check-in
- Diving in: Exploring the simplified scenarios
 - Scenario 3-2 impedance
 - Scenario 4.1 capacity of a lane
 - Scenario 4.4 critical movement analysis
 - Scenario 4.2 predicting delay
- Check-out and closure

The Big Picture

- We assume that volume is less than capacity.
- We assume uniform flow (rates).
- The total delay during one cycle is the area of the QAP.
- The average delay per vehicle is the total delay divided by the number of vehicles served during the cycle.

Terms We Will Use

- Queue size
- Total delay
- Average (control) delay

$$v(r + g_s) = sg_s \qquad \text{When queue clears: number of arrivals equals number of departures}$$

$$g_s = \frac{vr}{s - v} \qquad \text{Queue service time}$$

$$D_t = (0.5)(r)(vr + vg_s) \qquad \text{Total delay (area of triangle)}$$

$$vC \qquad \text{Vehicle arrivals or departures}$$

$$d_{avg} = 0.5r \left[\frac{1 - g/C}{1 - v/s}\right] \qquad \text{Average (uniform) delay per vehicle}$$

$$v(r + g_s) = sg_s$$
When queue clears: number of
arrivals equals number of departures $g_s = \frac{vr}{s - v}$ Queue service time $D_t = (0.5)(vr)(r + g_s)$ Total delay (area of triangle) vC Vehicle arrivals or departures
during cycle

$$d_{avg} = 0.5r \left[\frac{1 - g/C}{1 - v/s} \right]$$

Average (uniform) delay per vehicle

Example Calculation 4-10. Calculation of Average Delay When Volume Is Less than Capacity

capacity

$$c = \left(\frac{g}{C}\right)s = \left(\frac{40}{100}\right)1900 = 760 \ veh/hr$$

Given data:

- Arrival rate = 630 veh/hr
- s = 1900 veh/hr
- C = 100 sec
- r = 60 sec
- g = 40 sec

queue service time

$$g_s = \frac{vr}{s-v} = \frac{(630)(60)}{(1900 - 630)} = 29.7 \ sec \ sec$$

 $Q_{max} = (v)(r) = (630/3600)(60) = 10.5 veh$

Average uniform delay

$$d_{avg} = 0.5r \left[\frac{1 - g/C}{1 - v/s} \right]$$

$$d_{avg} = (0.5)(60) \left[\frac{1 - 40/100}{1 - 630/1900} \right]$$

 $d_{avg} = 26.9 \, sec/veh$

			INTERS	ECTION	CONTRO	DE DELAY	WORK	SHEET			
General Information						Site Information					
Analyst Agency or Company Date Performed Analysis Time Period						Intersection Area Type Jurisdiction Analysis Year		CBD Other			
Input In	tiel Peram	eters									
Number of Approach Survey of	of lanes, N speed, S, ount interval	(mi/ħ) , I ₄ (\$)			_	Total vehicl Stopped-ve Cycle lengt	ies arrMing hicle count h, C (s)	V _{tut} V _{tup}			
Input A	eld Dete	2									
ant	Out				Numb	er of Vehic	les in Que	8			
Time	Number	1	2	3	4	5	6	7	8	9	10
Total											

Average control delay

$$d = d_1 + d_2 + d_3$$

Uniform delay

$$d_1 = PF \ \frac{0.5 \ C(1 - g/C)^2}{1 - [\min(1, X) \ g/C]}$$

Incremental delay

$$d_2 = 900 T \left[(X_A - 1) + \sqrt{(X_A - 1)^2 + \frac{8 k I X_A}{c_A T}} \right]$$

Initial queue delay

$$d_3 = \frac{3,600}{v T} \left(t_A \frac{Q_b + Q_e - Q_{eo}}{2} + \frac{Q_e^2 - Q_{eo}^2}{2 c_A} - \frac{Q_b^2}{2 c_A} \right)$$

The Big Picture

- We assume that volume is less than capacity.
- We assume uniform flow (rates).
- The total delay during one cycle is the area of the QAP.
- The average delay per vehicle is the total delay divided by the number of vehicles served during the cycle.

- Check-in
- Diving in: Exploring four simplified scenarios
 - Scenario 3-2 impedance
 - Scenario 4.1 capacity of a lane
 - Scenario 4.4 critical movement analysis
 - Scenario 4.2 predicting delay
- Check-out and closure

Final Questions

