

Highway Capacity Manual $6^{\text {th }}$ Edition

Transportation Research Board

Learning and Applying the Methods and Models of the HCM

A Short Course Day \#2

Traffic Operations at Intersections Learning and Applying the Models and Methods of the Highway Capacity Manual Using Simplified Scenarios and Computational Engines

Michael Kyte and Rod Troutbeck

Topics for today

- Check-in
- Diving in: Exploring the simplified scenarios
- Check-out and closure

Topics for today

- Check-in
- Diving in: Exploring the simplified scenarios
- Scenario 3-2 - impedance
- Scenario 4.1 - capacity of a lane
- Scenario 4.4 - critical movement analysis
- Scenario 4.2 - predicting delay
- Check-out and closure

Topics for today

- Check-in
- Diving in: Exploring the simplified scenarios
- Scenario 3-2 - impedance
- Scenario 4.1 - capacity of a lane
- Scenario 4.4 - critical movement analysis
- Scenario 4.2 - predicting delay
- Check-out and closure

5. Scenario 3-2. Calculating the Capacity of Each Movement for a T-Intersection

Figure 3-8. Scenario 3-2
The Big Picture

- What is impedance?
- How does movement 4 impede movement 7 ?
- How does this impedance affect the capacity for movement 7?

Terms We Will Use

- Critical headway and follow-up headway
- Conflicting flow rate
- Impedance
- Potential and movement capacity
- Queue free state

5. Scenario 3-2. Calculating the Capacity of Each Movement for a T-Intersection

$$
\begin{aligned}
& c=\frac{v_{c} e^{-v_{c} t_{c} / 3600}}{1-e^{-v_{c} t_{f} / 3600}} \\
& c_{4}=\frac{v_{c, 4} e^{-v_{c, 4} t_{c, 4} / 3600}}{1-e^{-v_{c, 4} t_{f, 4} / 3600}} \\
& c_{4}=\frac{600 e^{-(600)(4.1) / 3600}}{1-e^{-(600)(2.2) / 3600}} \\
& c_{4}=987 v e h / h r \\
& \frac{v_{4}}{c_{4}}=\frac{100 v e h / h r}{987 v e h / h r}=0.101
\end{aligned}
$$

$$
\mathrm{c}=\text { capacity (veh/hr }
$$

$$
v_{c}=\text { conflicting flow (veh/hr) }
$$

$$
\mathrm{t}_{\mathrm{c}}=\text { critical headway (sec) }
$$

$$
t_{f}=\text { follow up headway (sec) }
$$

Table 3-6. Given conditions for Example Calculation 3-4

Movement	Volume (veh/hr)	Rank	$\mathbf{t}_{\mathbf{c}}$ (sec/veh)	$\mathbf{t}_{\mathbf{f}}$ (sec/veh)
2	600	1	-	-
4	100	2	4.1	2.2
7	50	3	7.1	3.5

volume-to-capacity ratio for movement 4

5. Scenario 3-2. Calculating the Capacity of Each Movement for a T-Intersection

$$
\begin{aligned}
c & =\frac{v_{c} e^{-v_{c} t_{c} / 3600}}{1-e^{-v_{c} t_{f} / 3600}} \\
c_{7} & =\frac{v_{c, 7} e^{-v_{c, 7} t_{c, 7} / 3600}}{1-e^{-v_{c, 4} t_{f, 4} / 3600}} \\
c_{7} & =\frac{800 e^{-(600)(7.1) / 3600}}{1-e^{-(600)(3.5) / 3600}} \\
c_{7} & =306 v e h / h r \\
c_{p, 7} & =306 v e h / h r
\end{aligned}
$$

$$
\mathrm{c}=\text { capacity (veh/hr }
$$

$$
v_{c}=\text { conflicting flow (veh/hr) }
$$

$$
\mathrm{t}_{\mathrm{c}}=\text { critical headway (sec) }
$$

$$
\mathrm{t}_{\mathrm{f}}=\text { follow up headway (sec) }
$$

Table 3-6. Given conditions for Example Calculation 3-4

Movement	Volume (veh/hr)	Rank	$\mathbf{t}_{\mathbf{c}}$ (sec/veh)	$\mathbf{t}_{\boldsymbol{f}}$ (sec/veh)
2	600	1	-	-
4	100	2	4.1	2.2
7	50	3	7.1	3.5

5. Scenario 3-2. Calculating the Capacity of Each Movement for a T-Intersection

$$
\begin{array}{cl}
c_{p, 7}=306 \text { veh } / h r & \begin{array}{l}
\text { Potential capacity } \\
\text { movement } 7
\end{array} \\
\frac{v_{4}}{c_{4}}=\frac{100 \text { veh } / h r}{987 v e h / h r}=0.101 & \begin{array}{l}
\text { Probability of queue } \\
\text { for movement 4 }
\end{array} \\
p_{0,4}=1-\frac{v_{4}}{c_{4}}=1-0.101=0.899 & \begin{array}{l}
\text { Probability of } \\
\text { queue-free state } \\
\text { for movement 4 }
\end{array} \\
c_{m, 7}=\left(1-\frac{v_{4}}{c_{4}}\right) c_{p, 7} & \begin{array}{l}
\text { Movement capacity } \\
\text { Movement 7 }
\end{array} \\
c_{m, 7}=(0.899)(306)=275 \text { veh/hr } & \begin{array}{l}
\text { Movement capacity } \\
\text { movement 7 }
\end{array}
\end{array}
$$

Table 3-6. Given conditions for Example Calculation 3-4

Movement	Volume (veh/hr)	Rank	$\mathbf{t}_{\mathbf{c}}$ (sec/veh)	$\mathbf{t}_{\mathbf{f}}$ (sec/veh)
2	600	1	-	-
4	100	2	4.1	2.2
7	50	3	7.1	3.5

5. Scenario 3-2. Calculating the Capacity of Each Movement for a T-Intersection

5. Scenario 3-2. Calculating the Capacity of Each Movement for a T-Intersection

Figure 3-8. Scenario 3-2
The Big Picture

- What is impedance?
- How does movement 4 impede movement 7 ?
- How does this impedance affect the capacity for movement 7?

Topics for today

- Check-in
- Diving in: Exploring the simplified scenarios
- Scenario 3-2 - impedance
- Scenario 4.1 - capacity of a lane
- Scenario 4.4 - critical movement analysis
- Scenario 4.2 - predicting delay
- Check-out and closure

The Big Picture

- How do we calculate capacity of a lane at a signalized intersection?
- We measure or predict green times, we measure or predict cycle length, and we measure or predict the saturation flow rate.
- Simply put, the capacity is the product of the green ratio (green time divided by cycle length) and the saturation flow rate.

Terms We Will Use

- Green time
- Cycle length
- Green ratio
- Saturation flow rate

$$
c=s\left(\frac{g}{C}\right)
$$

$\mathrm{c}=$ capacity, veh/hr
$s=$ saturation flow rate, veh/hr
$\mathrm{g}=$ effective green time, sec
C = cycle length, sec

6. Scenario 4-1. Calculating the Capacity of a Lane

Example Calculation 4-9. Determining Lane Capacity

For one lane of a signalized intersection (Figure 4-38), the saturation flow rate is 1900 vehicles per hour. The green is displayed for 15 sec , while the yellow time is 4 sec and the red clearance time is 1 sec . The lost time per phase is 4 sec . There are 60 cycles in one hour. What is the capacity of the lane?

$$
C=\frac{3600 \mathrm{sec} / \mathrm{hr}}{60 \mathrm{cycles} / \mathrm{hr}}=60 \mathrm{sec}
$$

Example Calculation 4-9. Determining Lane Capacity

For one lane of a signalized intersection (Figure 4-38), the saturation flow rate is 1900 vehicles per hour. The green is displayed for 15 sec , while the yellow time is 4 sec and the red clearance time is 1 sec. The lost time per phase is 4 sec . There are 60 cycles in one hour. What is the capacity of the lane?

	phase duration, D_{p}			
displayed red, R		displayed green, G	Y	R_{c}
	I_{1}			I_{2}
effective red, r		effective green, g		r

$$
\begin{aligned}
& D_{p}=G+Y+R_{c} \\
& D_{p}=15+4+1=20 \mathrm{sec} \\
& g=G+Y+R_{c}-l_{t} \\
& g=15+4+1-4=16 \mathrm{sec}
\end{aligned}
$$

$D_{p}=$ phase duration, sec
$\mathrm{G}=$ displayed green, sec
$\mathrm{Y}=$ displayed yellow, sec
$\mathrm{R}_{\mathrm{c}}=$ red clearance time, sec
$R=$ displayed red, sec

Example Calculation 4-9. Determining Lane Capacity

For one lane of a signalized intersection (Figure 4-38), the saturation flow rate is 1900 vehicles per hour. The green is displayed for 15 sec , while the yellow time is 4 sec and the red clearance time is 1 sec . The lost time per phase is 4 sec . There are 60 cycles in one hour. What is the capacity of the lane?

$$
\mathrm{g} / \mathrm{C}=(16 \mathrm{sec}) /(60 \mathrm{sec})=0.27
$$

$c=s\left(\frac{g}{c}\right)=(1900)(0.27)=513 \mathrm{veh} / \mathrm{hr}$
green ratio
capacity
6. Scenario 4-1. Calculating the Capacity of a Lane

Figure 4-36. Scenario 4-1

6. Scenario 4-1. Calculating the Capacity of a Lane

Figure 4-36. Scenario 4-1

6. Scenario 4-1. Calculating the Capacity of a Lane

Figure 4-36. Scenario 4-1

Figure 4-36. Scenario 4-1

The Big Picture

- How do we calculate capacity of a lane at a signalized intersection?
- We measure or predict green times, we measure or predict cycle length, and we measure or predict the saturation flow rate.
- Simply put, the capacity is the product of the green ratio (green time divided by cycle length) and the saturation flow rate.

Topics for today

- Check-in
- Diving in: Exploring the simplified scenarios
- Scenario 3-2 - impedance
- Scenario 4.1 - capacity of a lane
- Scenario 4.4 - critical movement analysis
- Scenario 4.2 - predicting delay
- Check-out and closure

The Big Picture

- Does our intersection design provide sufficient capacity to accommodate the projected or measured traffic volumes?

Terms We Will Use

- Flow ratio
- Capacity utilization
- Lost time

9. Scenario 4-4. Calculating the Capacity Utilization of an Intersection Using Critical Movement Analysis

$1+2=150+400=550 \mathrm{veh} / \mathrm{hr}$
$5+6=200+400=600 \mathrm{veh} / \mathrm{hr}$
$3+4=350+300=650 \mathrm{veh} / \mathrm{hr}$
$7+8=300+600=900 \mathrm{veh} / \mathrm{hr}$
$(5+6)+(7+8)=600+900=1500 \mathrm{veh} / \mathrm{hr}$

10. Scenario 4-4. Calculating the Capacity Utilization of an Intersection Using Critical

Concept:

- Flow ratio: proportion of the hour required to serve the given demand
$\mathrm{v}=$ arrival volume, veh/hr
$s=$ saturation flow rate, veh/hr
$y=v / s$
$y=$ flow ratio

Figure 4-59. Flow ratios for each movement for Example Calculation 4-15

Figure 4-51. Scenario 4-4

Figure 4-59. Flow ratios for each movement for Example Calculation 4-15

Figure 4-59. Flow ratios for each movement for Example Calculation 4-15
sum $=0.803$

Figure 4-59. Flow ratios for each movement for Example Calculation 4-15

Figure 4-51. Scenario 4-4

$X_{c}=\frac{\left(y_{E W-c r i t i c}+y_{N S-c r i t i c a l}\right)}{(C-L) / C}$
$X_{c}=\frac{(0.321+0.482)}{74 / 90}=\left(\frac{0.803}{0.82}\right)=0.98$

Figure 4-59. Flow ratios for each movement for Example Calculation 4-15
$\mathrm{X}_{\mathrm{c}}=$ critical volume-to-capacity ratio
y_{EW}-critical = critical flow ratio for EW
y_{NS}-critical = critical flow ratio for NS
$\mathrm{C}=$ cycle length, sec
L = lost time per phase, sec
9. Scenario 4-4. Calculating the Capacity Utilization of an Intersection Using Critical

Movement Analysis

Figure 4-51. Scenario 4-4

The Big Picture

- Does our intersection design provide sufficient capacity to accommodate the projected or measured traffic volumes?

Topics for today

- Check-in
- Diving in: Exploring the simplified scenarios
- Scenario 3-2 - impedance
- Scenario 4.1 - capacity of a lane
- Scenario 4.4 - critical movement analysis
- Scenario 4.2 - predicting delay
- Check-out and closure

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

The Big Picture

- We assume that volume is less than capacity.
- We assume uniform flow (rates).
- The total delay during one cycle is the area of the QAP.
- The average delay per vehicle is the total delay divided by the number of vehicles served during the cycle.

Terms We Will Use

- Queue size
- Total delay
- Average (control) delay

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

$$
\begin{array}{cl}
v\left(r+g_{s}\right)=s g_{s} & \begin{array}{l}
\text { When queue clears: number of } \\
\text { arrivals equals number of departures }
\end{array} \\
g_{s}=\frac{v r}{s-v} & \text { Queue service time } \\
D_{t}=(0.5)(r)\left(v r+v g_{s}\right) & \text { Total delay (area of triangle) } \\
v C & \begin{array}{l}
\text { Vehicle arrivals or departures } \\
\text { during cycle }
\end{array} \\
d_{\text {avg }}=0.5 r\left[\frac{1-g / C}{1-v / s}\right] & \text { Average (uniform) delay per vehicle }
\end{array}
$$

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

$$
\begin{array}{cl}
v\left(r+g_{s}\right)=s g_{s} & \begin{array}{l}
\text { When queue clears: number of } \\
\text { arrivals equals number of departures }
\end{array} \\
g_{s}=\frac{v r}{s-v} & \text { Queue service time } \\
D_{t}=(0.5)(v r)\left(r+g_{s}\right) & \text { Total delay (area of triangle) } \\
v C & \begin{array}{l}
\text { Vehicle arrivals or departures } \\
\text { during cycle }
\end{array} \\
d_{\text {avg }}=0.5 r\left[\frac{1-g / C}{1-v / s}\right] & \text { Average (uniform) delay per vehicle }
\end{array}
$$

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

capacity
$c=\left(\frac{g}{C}\right) s=\left(\frac{40}{100}\right) 1900=760 \mathrm{veh} / \mathrm{hr}$

Given data:

- Arrival rate $=630$ veh $/ \mathrm{hr}$
- $s=1900$ veh/hr
- $\mathrm{C}=100 \mathrm{sec}$
- $r=60 \mathrm{sec}$
- $\mathrm{g}=40 \mathrm{sec}$
queue service time
$g_{s}=\frac{v r}{s-v}=\frac{(630)(60)}{(1900-630)}=29.7 \mathrm{sec} \sec$

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

$Q_{\max }=(v)(r)=(630 / 3600)(60)=10.5$ veh

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

Average uniform delay

$$
\begin{aligned}
& d_{\text {avg }}=0.5 r\left[\frac{1-g / C}{1-v / s}\right] \\
& d_{\text {avg }}=(0.5)(60)\left[\frac{1-40 / 100}{1-630 / 1900}\right] \\
& d_{\text {avg }}=26.9 \mathrm{sec} / v e h
\end{aligned}
$$

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

Average control delay

$$
d=d_{1}+d_{2}+d_{3}
$$

Uniform delay

$$
d_{1}=P F \frac{0.5 C(1-g / C)^{2}}{1-[\min (1, X) g / C]}
$$

Incremental delay

$$
d_{2}=900 T\left[\left(X_{A}-1\right)+\sqrt{\left(X_{A}-1\right)^{2}+\frac{8 k I X_{A}}{c_{A} T}}\right]
$$

Initial queue delay

$$
d_{3}=\frac{3,600}{v T}\left(t_{A} \frac{Q_{b}+Q_{e}-Q_{e o}}{2}+\frac{Q_{e}^{2}-Q_{e o}^{2}}{2 c_{A}}-\frac{Q_{b}^{2}}{2 c_{A}}\right)
$$

7. Scenario 4-2. Calculating Delay on a Lane When Demand is less than Capacity

- Pretimed
- Demand < capacity

TH movements only
Uniform arrivals

- Isolated

Figure 4-39. Scenario 4-2

The Big Picture

- We assume that volume is less than capacity.
- We assume uniform flow (rates).
- The total delay during one cycle is the area of the QAP.
- The average delay per vehicle is the total delay divided by the number of vehicles served during the cycle.

Topics for today

- Check-in
- Diving in: Exploring four simplified scenarios
- Scenario 3-2 - impedance
- Scenario 4.1 - capacity of a lane
- Scenario 4.4 - critical movement analysis
- Scenario 4.2 - predicting delay
- Check-out and closure

Final Questions

