

Highway Capacity Manual $6^{\text {th }}$ Edition

Transportation Research Board

Learning and Applying the Methods and Models of the HCM

A Short Course Day \#3

Traffic Operations at Intersections Learning and Applying the Models and Methods of the Highway Capacity Manual Using Simplified Scenarios and Computational Engines

Michael Kyte and Rod Troutbeck

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
- The other scenarios
- Check-out and closure

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
- The other scenarios
- Check-out and closure

Classification of models

Computational: Directly computes results from equations or tables	Simulation: Tracks events and processes
Empirical: Based on field data	Analytical: Based on theory
Deterministic: Produces same result for given set of inputs	Stochastic: Results can vary based on statistical distributions
Microscopic: Individual driver decisions	Macroscopic: Aggregated flow characteristics
Event scan: Based on status of events of interest	Time scan: Updates made every time step
Evaluation: Performance data produced	Optimization: Objective function optimized based on performance data

HCM Traffic Analysis Tools

Computational: Directly computes results from equations or tables	Simulation: Tracks events and processes
Empirical: Based on field data	Analytical: Based on theory
Deterministic: Produces same result for given set of inputs	Stochastic: Results can vary based on statistical distributions
Microscopic: Individual driver decisions	Macroscopic: Aggregated flow characteristics
Event scan: Based on status of events of interest	Time scan: Updates made every time step
Evaluation: Performance data produced	Optimization: Objective function optimized based on performance data

From HCM Chapter 19:

The motorized vehicle methodology does not account for the effect of the following conditions on intersection operation:

- Turn bay overflow
- Multiple advance detectors in the same lane
- Demand starvation due to a closely spaced upstream intersection
- Queue spillback into the subject intersection from a downstream intersection
- Queue spillback from the subject intersection into an upstream intersection
- Premature phase termination due to short detection length, passage time, or both
- Right-turn-on-red (RTOR) volume prediction or resulting right-turn delay
- Turn movements served by more than two exclusive lanes
- Delay to traffic movements that are not under signal control
- Through lane (or lanes) added just upstream of the intersection or dropped just downstream of the intersection
- Storage of shared-lane left-turning vehicles within the intersection to permit bypass by through vehicles in the same lane

From HCM Chapter 19:

In addition to the above conditions, the methodology does not directly account for the following controller functions:

- Rest-in-walk mode for actuated and non-coordinated phases
- Preemption or priority modes
- Phase overlap (see discussion in text)
- Gap reduction or variable initial settings for actuated phases

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
- Scenario 4.3 - permitted LTs
- Scenario 4-6 - upstream signals
- The other scenarios
- Check-out and closure

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

- Pretimed
- Demand < capacity
- Permitted LTs
- Uniform arrivals
- Isolated

Figure 4-44. Scenario 4-3

The Big Picture

- Permitted LTs must wait for suitable headways in the opposing traffic stream.
- The saturation flow rate for permitted LTs is lower than for protected LTs.
- Part of the green that could be available for permitted LTs is not because of the clearing of the opposing queue.

Terms We Will Use

- Permitted LT phasing
- Exclusive LT lane
- Opposing queue

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

Figure 4-44. Scenario 4-3

red
green

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

Figure 4-44. Scenario 4-3
$s_{p}=\frac{v_{o} e^{-v_{0} t_{c} / 3600}}{1-e^{-v_{o} t_{f} / 3600}}$
c = capacity (veh/hr
$v_{c}=$ conflicting flow (veh/hr)
$\mathrm{t}_{\mathrm{c}}=$ critical headway (sec)
$\mathrm{t}_{\mathrm{f}}=$ follow up headway (sec)

$g_{s o}=\frac{v_{o} r}{s-v_{o}}$
$g-g_{s o}$
$c=s_{p}\left(\frac{g-g_{s o}}{C}\right)$
time for opposing queue to clear
subject green time available after opposing queue clears
capacity of permitted LT movement from exclusive lane

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

- Pretimed
- Demand < capacity
- Permitted LTs
- Uniform arrivals
- Isolated

Figure 4-44. Scenario 4-3

Example Calculation 4-12. Calculating the Capacity of a Permitted LT movement from an Exclusive LT lane

$g_{s o}=\frac{v_{o} r}{s-v_{0}}=\frac{(700)(30)}{1900-30}=17.5 \mathrm{sec}$
time for opposing queue to clear
subject green time available after opposing queue clears

$s_{p}=\frac{v_{o} e^{-v_{0} t_{c} / 3600}}{1-e^{-v_{o} t_{f} / 3600}}=\frac{700 e^{-(700)(4.5) / 3600}}{1-e^{-(700)(2.5) / 3600}}=758 v e h / h r$
saturation flow rate for permitted LT movement from exclusive lane
$c=(758)\left(\frac{30-17.5}{60}\right)=158 v e h / h r$
capacity of permitted LT
movement from exclusive lane

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

- Pretimed
- Demand < capacity
- Permitted LTs
- Uniform arrivals
- Isolated

Figure 4-44. Scenario 4-3

Example Calculation 4-12. Calculating the Capacity of a Permitted LT movement from an Exclusive LT lane

Opposing approach

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

Figure 4-44. Scenario 4-3

Example Calculation 4-12. Calculating the Capacity of a Permitted LT movement from an Exclusive LT lane

Subject approach

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

Traffic Operations at
Intersections
Numannann

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

- $g_{f}=$ time until arrival of first subject LT vehicle
- $g_{s o}=$ queue service time for opposing queue
- $\mathrm{g}_{\mathrm{q}}=$ time for second subject queue to clear

- $g_{u}=$ unsaturated green for subject approach after clearance of second queue

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

- $g_{f}=$ time until arrival of first subject LT vehicle
- $g_{s o}=$ queue service time for opposing queue
- $\mathrm{g}_{\mathrm{q}}=$ time for second subject queue to clear

- $g_{u}=$ unsaturated green for subject approach after clearance of second queue

8. Scenario 4-3. Calculating the Capacity of an Exclusive LT Lane with Permitted LT Phasing

- Pretimed
- Demand < capacity
- Permitted LTs
- Uniform arrivals
- Isolated

Figure 4-44. Scenario 4-3
The Big Picture

- Permitted LTs must wait for suitable headways in the opposing traffic stream.
- The saturation flow rate for permitted LTs is lower than for protected LTs.
- Part of the green that could be available for permitted LTs is not because of the clearing of the opposing queue.

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring four simplified scenarios
- Scenario 4.3 - permitted LTs
- Scenario 4-6 - upstream signals
- The other scenarios
- Check-out and closure

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Figure 4-71. Scenario 4-6

Terms We Will Use

- Offset
- Arrival flow profile
- Departure flow profile
- Time step
- Average travel time
- Queue size

The Big Picture

- We've previously assumed uniform arrivals.
- What happens if there is an upstream signal affecting the arrival pattern by creating platoons?
- How do we model a dispersing platoon traveling from one intersection to the next?
- How does the departure flow profile at the upstream intersection transition to the arrival flow profile at the downstream intersection?
- What is the signal offset?

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Predicted downstream flow at
time step i:

- Upstream flow t' time steps earlier
- Downstream flow one time step earlier

$$
q_{d, i}=F q_{u, i-t^{\prime}}+(1-F) q_{d, i-1}
$$

$F=\frac{1}{1.315+0.138 t_{R}}$
$t^{\prime}=t_{R}-\frac{1}{F}+1.25$

Predicted time for front of platoon to travel from upstream to downstream intersection

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

- Arrival flow rate is $600 \mathrm{veh} / \mathrm{hr}$
- Intersection spacing is 1000 ft
- $\mathrm{C}=60 \mathrm{sec}$
- $\mathrm{g} / \mathrm{C}=0.5$
- $\mathrm{s}=1900 \mathrm{veh} / \mathrm{hr}$
- Average vehicle speed $=25 \mathrm{mi} / \mathrm{hr}$ or $36.75 \mathrm{ft} / \mathrm{sec}$

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

$$
\begin{gathered}
g_{s}=\frac{v r}{s-v}=\frac{\left(600 \frac{v e h}{h r}\right)(30 \mathrm{sec})}{1900 \frac{v e h}{h r}-600 \frac{v e h}{h r}}=13.8 \mathrm{sec} \\
t_{R}=\frac{\text { distance }}{\text { average travel speed }}=\frac{1000 \mathrm{ft}}{36.75 \mathrm{ft} / \mathrm{sec}}=27.2 \mathrm{sec} \\
F=\frac{1}{1.315+0.138 t_{R}}=\frac{1}{1.315+(0.138)(27.2)}=0.197 \\
t^{\prime}=t_{R}-\frac{1}{F}+1.25=27.2-\frac{1}{0.197}+1.25=23 \mathrm{sec}
\end{gathered}
$$

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Figure 4-71. Scenario 4-6

$$
\begin{aligned}
& q_{d, i}=F q_{u, i-t^{\prime}}+(1-F) q_{d, i-1} \\
& q_{d, 54}=F q_{u, 31}+(1-F) q_{d, 53} \\
& q_{d, 54}=(0.197)(1900)+(0.803)(0)=375 \mathrm{veh} / \mathrm{hr} \\
& q_{d, 55}=F q_{u, 32}+(1-F) q_{d, 54} \\
& q_{d, 55}=(0.197)(1900)+(0.803)(375)=676 \mathrm{veh} / \mathrm{hr}
\end{aligned}
$$

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

Time step (sec)	. departure flow rate (veh/hr)	Downstream arrival flow rate (veh/hr)
$1-30$	0	0
$31-43$	1900	0
$44-53$	600	0
54	600	375
55	600	676
56	600	917
57	600	1111
58	600	1267
59	600	1392
60	600	1492

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Figure 4-71. Scenario 4-6

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Figure 4-71. Scenario 4-6

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Figure 4-71. Scenario 4-6

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Figure 4-71. Scenario 4-6

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Arrival Type	Progression Quality	Proportion Arriving During Green
1	Very poor	.17
2	Unfavorable	.33
3	Random (or uniform) arrivals	.50
4	Favorable	.67
5	Highly favorable	.83
6	Exceptionally favorable	1.00

11. Scenario 4-6. Calculating Delay on a Lane When the Arrival Pattern is Non-Uniform

Figure 4-71. Scenario 4-6

The Big Picture

- We've previously assumed uniform arrivals.
- What happens if there is an upstream signal affecting the arrival pattern by creating platoons?
- How do we model a dispersing platoon traveling from one intersection to the next?
- How does the departure flow profile at the upstream intersection transition to the arrival flow profile at the downstream intersection?
- What is the signal offset?

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
- The other scenarios
- Check-out and closure

| Intersection
 Control | Scenario | Conditions | Illustration |
| :---: | :--- | :--- | :--- | :--- |
| AWSC
 intersections | 2-1. Calculating the capacity of
 each lane for an intersection of
 two one-lane one-way streets | \bullet Two one-way streets
 \bullet | TH movements |

Scenario 4-5

- Pretimed control
- Demand>capacity
- TH movements
- Uniform arrivals
- Isolated

Figure 4-67. Flow profile diagram for Example Calculation 4-17

Scenario 4-5

- Pretimed control
- Demand>capacity
- TH movements
- Uniform arrivals
- Isolated

Figure 4-68. Cumulative vehicle diagram for Example Calculation 4-17

Figure 4-80. Capacity model, display model, and predicted green time prediction model parameters

Figure 4-79. Scenario 4-7

- Occupancy time, $\mathrm{t}_{\text {。 }}$
- Unoccupancy time, t_{u}
- Passage time
- Maximum allowable headway

Figure 4-82. Headway, occupancy time, and unoccupancy time

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
- The other scenarios
- Check-out and closure

Final Questions

