

Highway Capacity Manual 6th Edition

Transportation Research Board

Learning and Applying the Methods and Models of the HCM

A Short Course Day #3

Traffic Operations at Intersections Learning and Applying the Models and Methods of the Highway Capacity Manual Using Simplified Scenarios and Computational Engines

Michael Kyte and Rod Troutbeck

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
- The other scenarios
- Check-out and closure

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
- The other scenarios
- Check-out and closure

Classification of models

Difficulty of use

Adapted from "Traffic Signal Timing Manual"

4

Computational:	Simulation:	
Directly computes results from equations or tables	Tracks events and processes	
Empirical:	Analytical:	
Based on field data	Based on theory	
Deterministic:	Stochastic:	
Produces same result for given set of inputs	Results can vary based on statistical distributions	
Microscopic:	Macroscopic:	
Individual driver decisions	Aggregated flow characteristics	
Event scan:	Time scan:	
Based on status of events of interest	Updates made every time step	
Evaluation:	Optimization:	
Performance data produced	Objective function optimized based on performance	
	data	

HCM Traffic Analysis Tools

Computational.	Simulation	
Directly computes results from equations or tables	Tracks events and processes	
Empirical:	Analytical:	
Based on field data	Based on theory	
Deterministic:	Stochastic:	
Produces same result for given set of inputs	Results can vary based on statistical distributions	
5 1		
	Macroscopic:	
Microscopic:	Macroscopic:	
Microscopic: Individual driver decisions	Macroscopic: Aggregated flow characteristics	
Microscopic: Individual driver decisions	Macroscopic: Aggregated flow characteristics	
Microscopic: Individual driver decisions Event scan:	Macroscopic: Aggregated flow characteristics Time scan:	
Microscopic: Individual driver decisions Event scan: Based on status of events of interest	Macroscopic: Aggregated flow characteristics Time scan: Updates made every time step	
Microscopic: Individual driver decisions Event scan: Based on status of events of interest	Macroscopic: Aggregated flow characteristics Time scan: Updates made every time step	
Microscopic: Individual driver decisions Event scan: Based on status of events of interest Evaluation:	Macroscopic: Aggregated flow characteristics Time scan: Updates made every time step Optimization:	
Microscopic: Individual driver decisions Event scan: Based on status of events of interest Evaluation: Performance data produced	Macroscopic: Aggregated flow characteristics Time scan: Updates made every time step Optimization: Objective function optimized based on performance	
Microscopic: Individual driver decisions Event scan: Based on status of events of interest Evaluation: Performance data produced	Macroscopic: Aggregated flow characteristics Time scan: Updates made every time step Optimization: Objective function optimized based on performance	

VISSIM microsimulation model

From HCM Chapter 19:

The motorized vehicle methodology does not account for the effect of the following conditions on intersection operation:

- Turn bay overflow
- Multiple advance detectors in the same lane
- Demand starvation due to a closely spaced upstream intersection
- Queue spillback into the subject intersection from a downstream intersection
- Queue spillback from the subject intersection into an upstream intersection
- Premature phase termination due to short detection length, passage time, or both
- Right-turn-on-red (RTOR) volume prediction or resulting right-turn delay
- Turn movements served by more than two exclusive lanes
- Delay to traffic movements that are not under signal control
- Through lane (or lanes) added just upstream of the intersection or dropped just downstream of the intersection
- Storage of shared-lane left-turning vehicles within the intersection to permit bypass by through vehicles in the same lane

From HCM Chapter 19:

In addition to the above conditions, the methodology does not directly account for the following controller functions:

- Rest-in-walk mode for actuated and non-coordinated phases
- Preemption or priority modes
- Phase overlap (see discussion in text)
- Gap reduction or variable initial settings for actuated phases

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
 - Scenario 4.3 permitted LTs
 - Scenario 4-6 upstream signals
- The other scenarios
- Check-out and closure

The Big Picture

- Permitted LTs must wait for suitable headways in the opposing traffic stream.
- The saturation flow rate for permitted LTs is lower than for protected LTs.
- Part of the green that could be available for permitted LTs is not because of the clearing of the opposing queue.

Terms We Will Use

- Permitted LT phasing
- Exclusive LT lane
- Opposing queue

 g_u = unsaturated green for subject approach after clearance of second queue

•

•

•

17

- g_f = time until arrival of first subject LT vehicle
- g_{so} = queue service time for opposing queue
- g_q = time for second subject queue to clear
- g_u = unsaturated green for subject approach after clearance of second queue

The Big Picture

- Permitted LTs must wait for suitable headways in the opposing traffic stream.
- The saturation flow rate for permitted LTs is lower than for protected LTs.
- Part of the green that could be available for permitted LTs is not because of the clearing of the opposing queue.

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring four simplified scenarios
 - Scenario 4.3 permitted LTs
 - Scenario 4-6 upstream signals
- The other scenarios
- Check-out and closure

Terms We Will Use

- Offset
- Arrival flow profile
- Departure flow profile
- Time step
- Average travel time
- Queue size

The Big Picture

- We've previously assumed uniform arrivals.
- What happens if there is an upstream signal affecting the arrival pattern by creating platoons?
- How do we model a dispersing platoon traveling from one intersection to the next?
- How does the departure flow profile at the upstream intersection transition to the arrival flow profile at the downstream intersection?
- What is the signal offset?

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

- Arrival flow rate is 600 veh/hr
- Intersection spacing is 1000 ft
- C = 60 sec
- g/C = 0.5
- s = 1900 veh/hr
- Average vehicle speed = 25 mi/hr or 36.75 ft/sec

 $g_s = \frac{vr}{s - v} = \frac{(600\frac{veh}{hr})(30 \, sec)}{1900\frac{veh}{hr} - 600\frac{veh}{r}} = 13.8 \, sec$ $t_R = \frac{distance}{average \ travel \ speed} = \frac{1000 \ ft}{36.75 \ ft/sec} = 27.2 \ sec$ $F = \frac{1}{1.315 + 0.138t_{R}} = \frac{1}{1.315 + (0.138)(27.2)} = 0.197$ -(u) $t' = t_R - \frac{1}{F} + 1.25 = 27.2 - \frac{1}{0.197} + 1.25 = 23 sec$

Example Calculation 4-18. Calculating the Arrival Pattern at the Downstream Intersection

26

27

$$q_{d,i} = Fq_{u,i-t'} + (1-F)q_{d,i-1}$$

 $q_{d,54} = Fq_{u,31} + (1 - F)q_{d,53}$ $q_{d,54} = (0.197)(1900) + (0.803)(0) = 375 \text{ veh/hr}$ $q_{d,55} = Fq_{u,32} + (1 - F)q_{d,54}$

 $q_{d,55} = (0.197)(1900) + (0.803)(375) = 676 \text{ veh/hr}$

	Time step (sec)	Upstream departure flow rate (veh/hr)	Downstream arrival flow rate (veh/hr)			
-	1-30	0	0			
	31-43	1900	0			
	44-53	600	0			
	54	600	375			
	55	600	676			
r	56	600	917			
	57	600	1111			
	58	600	1267			
	59	600	1392			
	60	600	1492			

Arrival Type	Progression Quality	Proportion Arriving During Green	
1	Very poor	.17	
2	Unfavorable	.33	
3	Random (or uniform) arrivals	.50	
4	Favorable	.67	
5	Highly favorable	.83	
6	Exceptionally favorable	1.00	

35

The Big Picture

- We've previously assumed uniform arrivals.
- What happens if there is an upstream signal affecting the arrival pattern by creating platoons?
- How do we model a dispersing platoon traveling from one intersection to the next?
- How does the departure flow profile at the upstream intersection transition to the arrival flow profile at the downstream intersection?
- What is the signal offset?

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
- The other scenarios
- Check-out and closure

Intersection Control	Scenario	Conditions	Illustration
AWSC intersections	2-1. Calculating the capacity of each lane for an intersection of two one-lane one-way streets	 Two one-way streets TH movements 	
	2-2. Calculating the capacity of each lane for a standard 4-leg intersection	 Four approaches TH movements 	

Scenario 4-5

- Pretimed control
- Demand>capacity
- TH movements
- Uniform arrivals
- Isolated

Figure 4-67. Flow profile diagram for Example Calculation 4-17

Scenario 4-5

- Pretimed control
- Demand>capacity
- TH movements
- Uniform arrivals
- Isolated

Figure 4-68. Cumulative vehicle diagram for Example Calculation 4-17

Figure 4-82. Headway, occupancy time, and unoccupancy time

Topics for today

- Check-in
- Some perspective and context
- Diving in: Exploring the simplified scenarios
- The other scenarios
- Check-out and closure

Final Questions

